Search results

Search for "organic photocatalysts" in Full Text gives 10 result(s) in Beilstein Journal of Organic Chemistry.

Photoredox catalysis harvesting multiple photon or electrochemical energies

  • Mattia Lepori,
  • Simon Schmid and
  • Joshua P. Barham

Beilstein J. Org. Chem. 2023, 19, 1055–1145, doi:10.3762/bjoc.19.81

Graphical Abstract
  • catalyst generation for the reduction of aryl halides. Compared to conPET chemistry with organic photocatalysts, no terminal reductants like trialkylamines or formates were required for redox-neutral transformations like the C–H arylation, borylation or phosphorylation owing to the interplay between the
  • processes with PEC are limited to the use of recirculated flow or batch (vide infra). As another alternative to organic photocatalysts, the Polyzos group presented a tandem photocatalytic sequence applying [IrIII(ppy)2(dtbbpy)]PF6 ([Ir1]+) in combination with Et3N to accumulate the energy of two visible
PDF
Album
Review
Published 28 Jul 2023

Photoredox catalysis in nickel-catalyzed C–H functionalization

  • Lusina Mantry,
  • Rajaram Maayuri,
  • Vikash Kumar and
  • Parthasarathy Gandeepan

Beilstein J. Org. Chem. 2021, 17, 2209–2259, doi:10.3762/bjoc.17.143

Graphical Abstract
  • outcomes; less expensive organic photocatalysts in nickel-catalyzed transformations are less explored. Further, the major challenges of C‒H functionalization, including site specificity and functionalization of stronger C–H bonds, remain unexplored. Furthermore, examples of enantioselective C–H
PDF
Album
Review
Published 31 Aug 2021

When metal-catalyzed C–H functionalization meets visible-light photocatalysis

  • Lucas Guillemard and
  • Joanna Wencel-Delord

Beilstein J. Org. Chem. 2020, 16, 1754–1804, doi:10.3762/bjoc.16.147

Graphical Abstract
PDF
Album
Review
Published 21 Jul 2020

Photocatalysis with organic dyes: facile access to reactive intermediates for synthesis

  • Stephanie G. E. Amos,
  • Marion Garreau,
  • Luca Buzzetti and
  • Jerome Waser

Beilstein J. Org. Chem. 2020, 16, 1163–1187, doi:10.3762/bjoc.16.103

Graphical Abstract
  • ][20][21][22][23][24][25]. Most of these reports are organized according to the structural features of the dye and/or their applications in synthetic chemistry. In contrast, this review will focus on the different possible conceptual approaches based on organic photocatalysts for the generation of
  • combination of eosin Y (OD13) with a sacrificial electron donor can trigger the reductive debromination of several α-carbonyl halides [53]. Riboflavin (OD11) [54] and thiaporphyrin [55] have been applied as well as organic photocatalysts for similar reductive dehalogenations. Hydrogen atom transfer
PDF
Album
Review
Published 29 May 2020

Recent applications of porphyrins as photocatalysts in organic synthesis: batch and continuous flow approaches

  • Rodrigo Costa e Silva,
  • Luely Oliveira da Silva,
  • Aloisio de Andrade Bartolomeu,
  • Timothy John Brocksom and
  • Kleber Thiago de Oliveira

Beilstein J. Org. Chem. 2020, 16, 917–955, doi:10.3762/bjoc.16.83

Graphical Abstract
  • overcome these issues, and leads to a drastic reduction of reaction time, lower photocatalyst loadings, minimization of the formation of byproducts [2] and uses visible light, which is considered a clean reagent [4]. Overall, visible light combined with organic photocatalysts such as porphyrinoids, make
PDF
Album
Review
Published 06 May 2020

Aldehydes as powerful initiators for photochemical transformations

  • Maria A. Theodoropoulou,
  • Nikolaos F. Nikitas and
  • Christoforos G. Kokotos

Beilstein J. Org. Chem. 2020, 16, 833–857, doi:10.3762/bjoc.16.76

Graphical Abstract
  • ) as the polymerization initiator and benzaldehyde derivatives as organic photocatalysts [49]. 23 W compact fluorescent lamps were employed as the light source and N,N-dimethylaniline (51) was used as a potential reductant. The benzaldehyde derivatives tested are presented in Scheme 13 and included 4
PDF
Album
Review
Published 23 Apr 2020

Applications of organocatalysed visible-light photoredox reactions for medicinal chemistry

  • Michael K. Bogdos,
  • Emmanuel Pinard and
  • John A. Murphy

Beilstein J. Org. Chem. 2018, 14, 2035–2064, doi:10.3762/bjoc.14.179

Graphical Abstract
  • mechanistic considerations are highlighted in the text when appropriate. Keywords: C–H functionalisation; heterocycles; late-stage functionalisation; medicinal chemistry; organic dyes; organic photocatalysts; peptide chemistry; photoredox catalysis; Review 1 Introduction 1.1 Main advantages of
PDF
Album
Review
Published 03 Aug 2018

Photocatalytic formation of carbon–sulfur bonds

  • Alexander Wimmer and
  • Burkhard König

Beilstein J. Org. Chem. 2018, 14, 54–83, doi:10.3762/bjoc.14.4

Graphical Abstract
PDF
Album
Review
Published 05 Jan 2018

Mechanochemical borylation of aryldiazonium salts; merging light and ball milling

  • José G. Hernández

Beilstein J. Org. Chem. 2017, 13, 1463–1469, doi:10.3762/bjoc.13.144

Graphical Abstract
  • the photodimerizations of olefins by manual grinding of the reactants followed by long UV-light exposure [10], or by vortex grinding [11]. However, until now, studies of photocatalyzed mechanochemical reactions involving, for example, metal complexes [12] or organic photocatalysts (PC) [13] has been
PDF
Album
Supp Info
Full Research Paper
Published 26 Jul 2017

On the mechanism of photocatalytic reactions with eosin Y

  • Michal Majek,
  • Fabiana Filace and
  • Axel Jacobi von Wangelin

Beilstein J. Org. Chem. 2014, 10, 981–989, doi:10.3762/bjoc.10.97

Graphical Abstract
  • -driven reactions that lie beyond the focus of this study. Eosin Y (and many other organic photocatalysts) undergo rapid acid–base equilibria which significantly alter the photophysical properties. It is therefore of pivotal importance to ascertain the actual nature of the employed dye under the reaction
PDF
Album
Supp Info
Full Research Paper
Published 30 Apr 2014
Other Beilstein-Institut Open Science Activities